









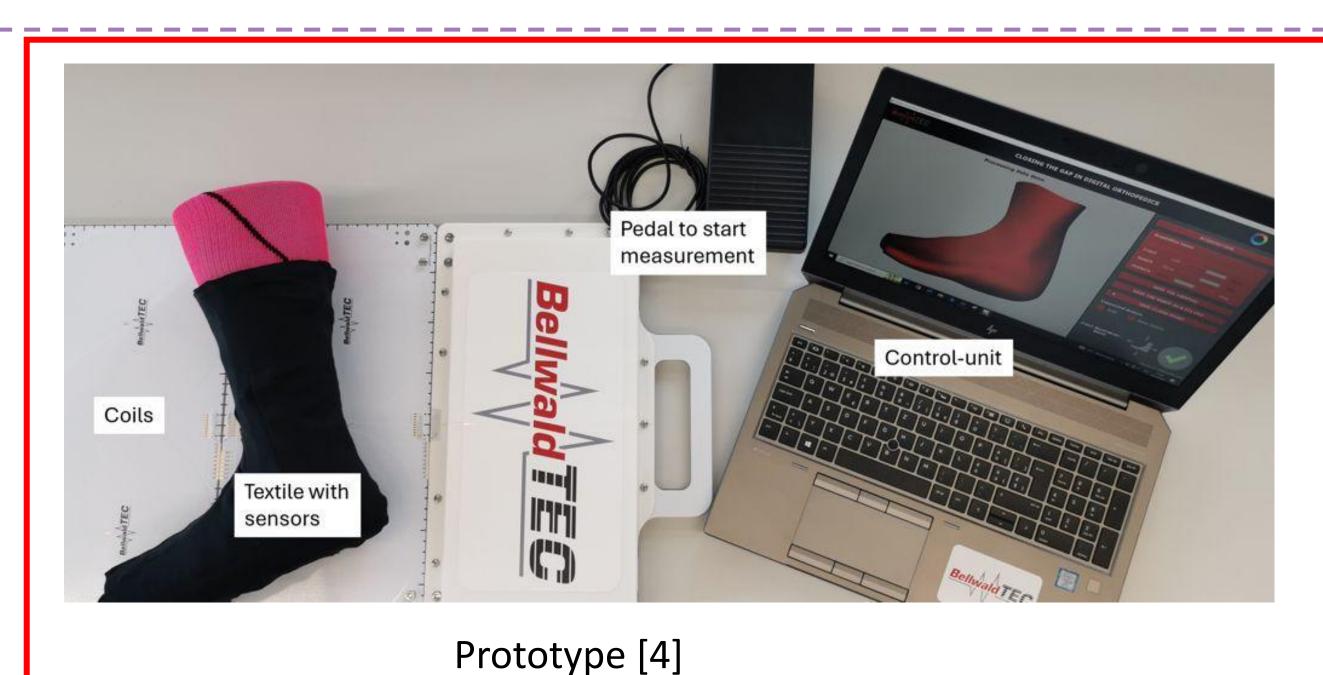


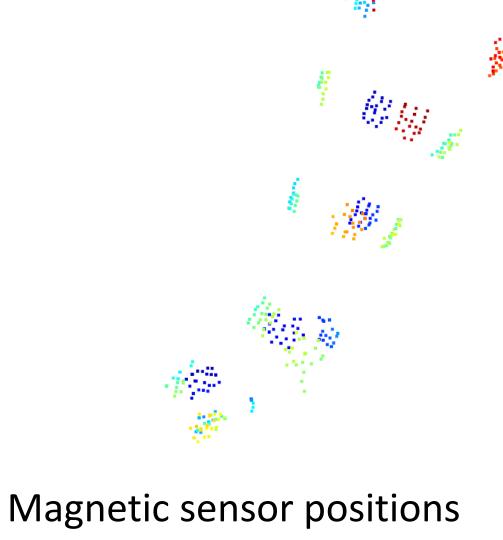


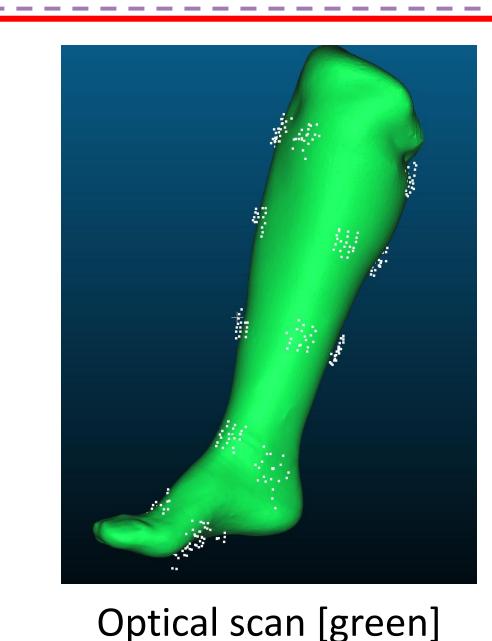



# Reconstruction of 3D shapes from magnetic data for orthopedic orthoses using deep learning

Sarah Chouchene<sup>1\*</sup>, Manon Lambert<sup>1</sup>, Corentin Féry<sup>2</sup>, Simon Lemoigne<sup>2</sup>, Thomas Quirin<sup>2</sup>, Joseph Lam-Weil<sup>1</sup>, Joris Ravaglia<sup>1</sup>, Ralf
Schumacher<sup>3</sup>, Joris Pascal<sup>2</sup>, Luc Hébrard<sup>1</sup>, Morgan Madec<sup>1</sup>


- <sup>1</sup>Laboratoire ICube, UMR 7357 (University of Strasbourg / CNRS), 300 bd Sébastien Brant, F-67400 Strasbourg
- <sup>2</sup> Institute for Medical Engineering and Medical Informatics / School of Life Sciences FHNW, Hofackerstrasse 30, CH-4132 Muttenz
- <sup>3</sup> BellwaldTEC GmbH Muttenz, Stockertstrasse 2, CH-4132 Muttenz


\* chouchene@unistra.fr


The design of **customized orthoses** relies on the ability to accurately reconstruct the three-dimensional geometry of the patient's limb. Traditional 3D scanning methods rely primarily on optical scanners or photogrammetry techniques, offering high accuracy but requiring expensive equipment, technical expertise, and controlled lighting conditions [1]. These constraints limit their use in routine clinical settings or in resource-limited environments. **Magnetic sensors** are a promising alternative to optical sensors for capturing spatial data. They enable the acquisition of positional information even in the absence of direct visibility, making it possible to take measurements in areas that are hidden or difficult to access [2]. However, the data obtained is often partial or noisy, which complicates direct **3D reconstruction**. In this context, **artificial intelligence** can be used to complete and reconstruct partially measured point clouds. Recent **deep learning** approaches applied to 3D completion exploit neural network architectures capable of modeling the spatial structure of an object from an incomplete set of points [3]. The objective of this work is to develop an Al model capable of predicting and reconstructing the missing points in a partial cloud derived from magnetic measurements, in order to generate models that can be used for the manufacture of **customized orthoses** by 3D printing.

## Data pre-processing









point clouds magnetic sensors [white]

Current method
Scotchcast bandages

Our method

from magnetic sensor positions to shape reconstruction

- Cleaning outliers from noisy sensor data
- Data normalization
- Alignment between magnetic sensor positions and optical scan of the shape

Objective

Reconstruct the 3D shape from point clouds predicted by an Al model — a completion of missing points.

#### Methodology and results Partial data Predicted point (Magnetic sensor cloud positions) Data Al networks Normalization Validation Reference data (Mean Distance Error (Optical scan) CloudCompare) **Prediction and Validation** Deep learning Inputs 3D Reconstruction Example 1 Example 2 Partial data Reconstructed Avg distance: 5.32 mm Avg distance: 2.94 mm

# Conclusion and perspectives

- This work demonstrates the feasibility of reconstructing 3D geometries from magnetic field data using deep learning.
- The proposed model achieves promising accuracy, validating the approach as a viable first step toward data-driven magnetic reconstruction.
- Future work will focus on integrating **physical and geometric constraints** to enhance robustness and generalization.
- Hybrid models combining data-driven learning and physics-informed formulations could improve interpretability and precision.
- The method could be extended to **objects exhibiting complex, non-rigid deformations**, enabling broader industrial and scientific applications.

## References

- [1] Haleem et al., Clinical Epidemiology and Global Health 7(2), 199–210 (2019)
- [2] Ma, Y et al., IEEE Communications Surveys & Tutorials (2025)
- [3] Qi, C.R et al., Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 652–660 (2017)
- [4] Bellwaldtec, web site: https://bellwaldtec.ch/home-en/

The HelpMeWalk project is part of the Science Offensive of the trinational Upper Rhine Metropolitan Region, co-financed by the European Union via the Interreg Upper Rhine programme, the Grand Est Region, the Ministerium für Wissenschaft, Forschung und Kunst of the Land of Baden-Württemberg and the Ministerium für Wissenschaft und Gesundheit of the Land of Rhineland-Palatinate. The Swiss Confederation and the Cantons of North-Western Switzerland are contributing to the funding of the Swiss partners in the project.