
This work demonstrates the feasibility of reconstructing 3D geometries from 
magnetic field data using deep learning.

The proposed model achieves promising accuracy, validating the approach as a 
viable first step toward data-driven magnetic reconstruction.

Future work will focus on integrating physical and geometric constraints to 
enhance robustness and generalization.

Hybrid models combining data-driven learning and physics-informed formulations 
could improve interpretability and precision.

The method could be extended to objects exhibiting complex, non-rigid 
deformations, enabling broader industrial and scientific applications.
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The design of customized orthoses relies on the ability to accurately reconstruct the three-dimensional geometry of the patient's limb.
Traditional 3D scanning methods rely primarily on optical scanners or photogrammetry techniques, offering high accuracy but requiring
expensive equipment, technical expertise, and controlled lighting conditions [1]. These constraints limit their use in routine clinical settings or in
resource-limited environments. Magnetic sensors are a promising alternative to optical sensors for capturing spatial data. They enable the
acquisition of positional information even in the absence of direct visibility, making it possible to take measurements in areas that are hidden or
difficult to access [2]. However, the data obtained is often partial or noisy, which complicates direct 3D reconstruction. In this context, artificial
intelligence can be used to complete and reconstruct partially measured point clouds. Recent deep learning approaches applied to 3D
completion exploit neural network architectures capable of modeling the spatial structure of an object from an incomplete set of points [3]. The
objective of this work is to develop an AI model capable of predicting and reconstructing the missing points in a partial cloud derived from
magnetic measurements, in order to generate models that can be used for the manufacture of customized orthoses by 3D printing.
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Methodology and results

Our method
from magnetic sensor positions to shape reconstruction 

▪ Cleaning outliers from noisy sensor data
▪ Data normalization

Reconstruct the 3D shape from point clouds predicted by an AI 

model          a completion of missing points.
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▪ Alignment between magnetic sensor positions and 
optical scan of the shape
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